

On the way to Planar Optronic Systems

presented by: Prof. Dr.-Ing. Ludger Overmeyer

SysInt 2014, Thursday July 3, 2014, in Bremen, Germany

Acknowledgements

The PlanOS science team (alphabetical order)

Meriem	Akin	Thomas	Hanemann	Welm	Pätzold	Laszlo	Sajti
Florian	Bär	Meike	Hofmann	Ann Britt	Petermann	Wolfgang	Schade
Konrad	Bethmann	Christian	Kelb	Elke	Pichler	Thomas	Schmidt
Tobias	Birr	Ann-Katrin	Kniggendorf	Oswald	Prucker	Anne-Katrin	Schuler
Patrick	Bollgrün	Michael	Köhring	Torsten	Rabe	Andreas	Schwenke
Kort	Bremer	Martin	Körner	Maik	Rahlves	Stanislav	Shermann
Boris	Chichkov	Jan Gerrit	Korvink	Holger	Reinecke	Yixiao	Wang
Ayhan	Demircan	Wolfgang	Kowalsky	Carsten	Reinhardt	Nan	Wang
Sebastian	Dikty	Dario	Mager	Eduard	Reithmeier	Ulrike	Willer
Sebastian	Döhring	Uwe	Morgner	Maher	Rezem	Tim	Wolfer
Henrik	Ehlers	Claas	Müller	Lutz	Rissing	Merve	Wollweber
Ludmila	Eisner	Gregor	Osterwinter	Detlef	Ristau	Marc	Wurz
Melanie	Gauch	Torsten	Otto	Bernhard	Roth	Yanfen	Xiao
Uwe	Gleißner	Ludger	Overmeyer	Raimund	Rother	Hans	Zappe
Axel	Günther	Malwina	Pajestka	Jürgen	Rühe	Urs	Zywietz

Funded by **German Research Foundation** (Deutsche Forschungsgemeinschaft)

DFG

- Introduction
- Vision of sensor concepts
- > Materials
- Production methods
- > Characterization
- > Summary

- Light will be the main future media for signal transmission.
- Measured signals will be converted into light.
- Electrical signals will be exchanged for light signals.
- ➤ A fully optical world?
- > What do we need to get there?

Why optical technologies?

Why using photons?

- Variety of planar sensor concepts
- Low energy consumption
- High bandwidth
- Electro-magnetic compatibility
- Simple multiplexing
- High integration density on various scales

Planarity is the key to the integration and processability in parallel processes.

Why using polymers?

- High functionality; versatile material class
- Modifiable to the application
- Efficient processability, even at high throughput, e.g. reel-to-reel process
- Simple build-up of large-scale systems
- Small layer thickness = high resource efficiency
- Hybrid-systems for trans-technology matrix structures possible

Integration of electronics

Planar integration of optics

- > Introduction
- > Vision of sensor concepts
- > Materials
- Production methods
- > Characterization
- > Summary

Possible and new sensor concepts

- Interferometric sensors
- Strain detection sensors
- Temperature detection sensors
- Whispering gallery mode sensors
- > Planar optical polymer foil spectrometer

Mach-Zehnder interferometric sensor

Fig. 15.1: S-bend funtions for Mach-Zehnder interferometer (Hofmann, 2014).

Fig. 15.2: Transmission within S-bends (Hofmann, 2014).

core layer

substrate

5000

6000

Planar integrated strain detection sensors

Kelb C, Reithmeier E, Roth B. Planar integrated polymer-based optical strain sensor. Proceedings of SPIE Photonics West 8977, 2014 MOEMS and Miniaturized Systems XIII, 89770Y (March 7, 2014)

Planar integrated temperature detection sensors

Suhir E., Lee Y. C., Wong C. P., Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging: Volume I, Springer, 2007. Weber M. J. Handbook of Optical Materials, CRC Press, 2003.

- Foil integrated Whispering-gallery mode sensors
- Resonant frequencies very sensitive to changes on surrounding refractive index
- Ultimate target sensitivity: single-molecule detection in liquid phase
- Simulation with RSoft

Figure 20.1: The microsphere is attached to one waveguide, another waveguide detects the transmitted signal.

- ✓ Ring-resonator: inner diameter 4.5 μ m, thickness 1 μ m, n=1.59
- \checkmark The left waveguide is used as an excitation source: thickness 1 µm, n=1.46
- ✓ In case of resonance: light is coupled into the ring-resonator, dip in the transmission signal

Figure 20.2: Build-up of the electromagnetic field in the WGM of a 1 μ m thick ring resonator, λ = 1089 nm (Petermann, 2014).

Planar optical polymer foil spectrometer - PolyAWG

- Simulations for singlemode waveguides
- Singlemode waveguide cores with either high aspect ratio or small dimensions (< 700 nm)</p>
- ZnO nanowires in substrate against mechanical strain

Fig. 21.1: Sketch of an AWG (TU Clausthal).

Fig. 21.2: Geometry (height x width) of the simulated waveguides (TU Clausthal).

Fig. 21.3: Simulations performed with PhotonDesing® FIMMWAVE, red bars represent the single-mode region (TU Clausthal).

- Introduction
- Vision of sensor concepts
- > Materials
- Production methods
- > Characterization
- > Summary

- > Target
 - Development of polymers with tailored optical & thermo-mechanical properties for polymer waveguides
- > Concept
 - ✓ Prepolymer synthesis with respect to
 - ✓ adjustable physical properties
 - ✓ use in a variety of shaping/molding techniques
- Prepolymer
 - ✓ adjustable viscosity $(10^{-3} 10^2 \text{ Pa•s})$
 - ✓ UV/Vis curing favorable
- > Polymer
 - ✓ adjustable refractive index (1.39 < n < 1.65 @ 589 nm)
 - ✓ optical damping less than 1 dB/m
 - ✓ continuous operation temperature > 100°C

- > Prepolymer \rightarrow MMA/PMMA/1,3-Butandioldimethacrylate (BDMA)
- > Polymer \rightarrow Poly(methylmethacrylate-co-1,3-butandioldimethacrylate)
- ➢ Dopant → Phenanthrene

Fig. 25.1: Viscosity adjustment with prepolymer concentration, 5 Pa·s > η > 0.15 Pa·s, @100 1/s, 60°C (IMTEK, Freiburg).

Fig. 25.2: Refractive index change with dopant concentration, 1.49 < n < 1.55, @589 nm, 20 °C (IMTEK, Freiburg).

- Introduction
- Vision of sensor concepts
- > Materials
- Production methods
- > Characterization
- > Summary

Fig. 29.1: Planar optronic sensor system; highlighted waveguide (Wang, 2014).

* Wang, Y., L. Overmeyer, "Low temperature Optodic Bonding for Integration of Micro Optoelectronic Components in Polymer Optronic Systems", Procedia Technology, Elsevier, (accepted).

Production concepts for integrated waveguides

- Laser processes
 - \checkmark fs- laser processing
 - ✓ UV-photolithograghy
- Hot embossing and nano imprint
- > Printing
 - ✓ Offset
 - ✓ Flexographic
 - ✓ Inkjet
- Lamination and surface coating

Two-Photon-Polymerization (2PP)

Fig. 33.1: Polymer waveguides on a glass substrate (Zywietz, 2014).

Fig. 33.2: Single polymer waveguide fabricated by 2PP (Zywietz, 2014).

Fig. 33.4: Polymer waveguides on a highly flexible PMMA substrate (Zywietz, 2014).

*Zywietz, U., C. Reinhardt, A.B. Evlyukhin, B.N. Chichkov, "Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses", Nature Communications, 5, No. 3402, (2014).

Hot embossing of micro-optical components

Fig. 34.1: Fabricated optical waveguides through hot embossing (Rezem, 2014).

Fig. 34.2: Waveguide structures on a silicone embossing stamp (Rezem, Akin, 2014)

Fig. 34.3: Waveguide transmission losses as a function of the bend radius simulated in Zemax and RSoft (Rezem, 2014).

Fig. 34.4: Hot-embossing tool currently under development (Kelb, 2014).

- Manufacturing of coupling structures and waveguides in 350 µm-thin polymer foils
- Different coupling structures have been tested

Rezem, M., A. Günther, M. Rahlves, B. Roth, and E. Reithmeier, "Hot embossing of polymer optical waveguides for sensing applications", Procedia Technology, Elsevier, (accepted).

High throughput production of optical waveguides

> Demand: Manufacture of planar waveguide network on polymer foil

Fig. 35.1: Flexographic printed waveguides; acrylate on PVC substrate (Wolfer, 2013).

> Approach:

Combination of two printing processes

- Flexographic printing for prestructuring of films with high throughput
- Inkjet printing for individual complement with high resolution

 Process requirements for large scale production:

 high throughput
 high resolution

Fig. 35.2: Process limits of printing methods (OE-A Roadmap).

Wolfer, Bollgruen, Mager, Overmeyer, Korvink (2014). Flexographic and inkjet printing of polymer optical waveguides for fully integrated sensor systems. Technology Procedia, Elsevier.

High throughput production of optical waveguides

- Flexographic printing machines
 - ✓ Process development in laboratory scale
 - ✓ Verification on modified industrial scale printing machine

Fig. 36.1: Flexographic printing machine in laboratory scale, IGT F1 UV

Inkjet printing machines

Fig. 36.3: Pixdro LP 50 (Source: Meyer Burger)

Fig. 36.2: Printing machine Speedmaster SM52 (Source: Heidelberger Druckmaschinen AG).

Fig. 36.4: Dimatix DMP 2831 (Source: Dimatix)

High throughput production of optical waveguides

Typical properties of printed multimode optical waveguides

Table 2: Typically achieved process properties (Wolfer, 2014).

Property	Value			
Width	20-1,000 µm			
Height	<mark>4-110 µm</mark>			
Max. aspect ratio	0.5			
Speed of operation	50-260 m²/h			
Surface roughness	12.5 nm			

Waveguide setup in layers with parabolic shape

Fig. 38.2: Possible waveguide concepts by combining the core and cladding layers (Wolfer, 2014).

Wolfer, Bollgruen, Mager, Overmeyer, Korvink (2014). Flexographic and inkjet printing of polymer optical waveguides for fully integrated sensor systems. Technology Procedia, Elsevier.

What about active optical systems?

Fig. 43.1: Planar optronic sensor system; highlighted diodes (Wang, 2014).

Optodic bonding as bridging technology

UV-curing

adhesive

- ≻ High success rate
 → 95 %
- Short process time
 → app. 10 s
- Mechanical strength
 → 23 N/mm²

Fig. 44.1 (right): Schematic illustration of optode for sideway irradiation (Wang, 2014)

0.112 Ω

0.286 Ω

- Electrical conductivity
 - ✓ panacol 4732: 0.292 Ω
 - ✓ Dymax OP-29: 0.169 Ω
 - ✓ Dymax OP-29-Gel:
 - ✓ Dymax OP-24-Rev-B: 0.110 Ω
 - ✓ Delo GB368:

Bonding
head

Chip

UV-radiation

Transparent

polymer substrate

Fig. 44.2: Photo of realized optode, (Low Temperature Optodic Bonding for Integration of Micro Optoelectronic Components in Polymer Optronic Systems, Wang et al., SysInt 2014, accepted).

Integration of OLEDs and OPDs into waveguide systems

- Waveguide integrated device for detection at 634 nm
 - ✓ ITO on polymer waveguide
 - \checkmark Structure optimization for high responsivity
- Optical simulations of OPD/waveguide structures
 - ✓ Mode distribution
 - ✓ Waveguide losses (loss channels)

Photodetector operation parameters

Laser-active waveguides

Kwon, Y.K., J.K. Han, J.M. Lee, Y.S. Koo, J.H. Oh, H.-S. Lee, E.-H. Lee, "Organic-inorganic hybrid materials for flexible optical waveguide applications", J. Mater. Chem., 18, 579-585, DOI: 10.1039/B715111J, (2008).

- Introduction
- Vision of sensor concepts
- > Materials
- Production methods
- > Characterization
- > Summary

Measurement of optical transmission properties

- Attenuation of waveguides
- Refraction index distribution
- Light dispersion in waveguides
- Coupling efficiency between interfaces
- ⇒ Some examples of spectral measurement equipment

- Light sources
 - ✓ LED, including confocal pattern for end face characterization
 - ✓ Diode laser (638 nm, 140 mW)
- Numerical aperture stapless variable within 0.1-0.5
- Aperture sizes: 1-1,000 μm

Fig. 51.1: End face of printed waveguide in optical measurement setup with focused LED spot (Wolfer, 2014).

Fig. 51.2: Optical measurement setup (Dumke, ITA, 2014).

Refractive index measurements

Hot embossing

Fig. 53.1: Epocore waveguides structured on a silicon wafer (Günther, 2014).

- Epocore waveguides structured on a silicon wafer
 - ✓ Substrate: silicon
 - ✓ Core material: epocore
 - ✓ Resolution 1.25 µm/pixel

fs-laser direct writing

Fig. 53.2: Waveguide written by laser direct writing into the substrate (Günther, 2014).

- Profilometer specifications
 - ✓ Refractive index resolution up to 10⁻⁴
 - ✓ Spatial resolution: 0.5 µm
 - Wavelength: 405 nm, 635 nm, 845 nm, 1320 nm

- Introduction
- Vision of sensor concepts
- > Materials
- Production methods
- > Characterization
- > Summary

Sensors for excellent flight performances ...

... and for stress and temperature surveillance

- Planar sensors concepts for measurement of
 - ✓ Temperature
 - ✓ Strain
 - \checkmark Liquid and gaseous analytes
- Development of thermo-mechanical and chemical stable as well as refractive index tailored polymers
- High throughput production of waveguides in reelto-reel process - a combination of
 - ✓ Printing
 - ✓ Hot embossing
 - ✓ Laser processing
 - ✓ Lithography
- Optodical bonding as bridging technology
- Equipment available for characterization of
 - ✓ Refractive index
 - ✓ Thickness
 - ✓ Attenuation
 - ✓ Form stability
 - ✓ Glass transition temperature

