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Introduction 

• Structural Health Monitoring (SHM) 

A process of identifying one or more of 

– Load applied or displacement obtained on the structure 

– Extent of damage 

– Growth rate of damage 

– Performance of the structure as damage accumulates 

• SHM can help in moving from predictive maintenance to 

need-based maintenance 

–  Increase in safety 

–  Cost saving 

 

 



Whispering Gallery Mode Sensors 

• Tunable laser is used 
• Evanescent field of the stripped 

off section of fiber interacts with 
that of the resonator (particle) 

• Coupling back of the evanescent 
field in the fiber gives resonance 
peaks, which can be tracked 
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Whispering Gallery Mode Sensors 

• Very high sensitivity 
– Detection of single chemical 

molecules 

– Detection of a single HIV 
virus 

– Measurement of sub-
nanometer displacement 
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n  = refractive index of the micro-
sphere  
l  = wavelength 
r  = micro-sphere radius 

For  r >> l,    resonance condition: 



WGM Sensors: Effect of 
Refractive Index 
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Silica (Yves Belouard et al. 

2006) 

PMMA (Feridun et al. 2004) 

C1 (m
2/N) -4.22 x10-12 -12 x10-12 

C2 (m
2/N) -0.65 x10-12 -12 x10-12 

n0 1.467 1.4876 

Where  

n0 undeformed index of refraction  
1, 2 and 3 are principal stresses 
C1 and C2 are elasto-optic coefficients of the 
material of the sphere.  
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• Sensitivity comes at a 
price! 
– Signal to noise ratio can 

be low 

– Keeping the particle in 
resonance can be difficult  



Introduction 

• Microbend sensors 
– Use multi-mode fiber 

– Require high power light source 

– Normally used under compression 

– Large size 

Input laser light  to detector 

Applied force 

optical 
fiber 

Power losses at each fiber bend 
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Results and Discussion 
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• Power attenuation 

• Critical radius (Jeunhomme, 1983) 
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where 

l is the operating wavelength 

lc is cut-off wavelength 

n: core-cladding index of refraction 

difference 

• For present single-mode optical 

fiber 

l=1.31 µm, lc=1.26 µm, n=0.0058 

 Rc=11.8 mm 



Fiber-loop sensors 

• Power transmission due to curvature 

 

 

– Pout is transmitted power through the loop 

– Pout is power incoming to the loop 

• Compressing loop creates more losses, 
relative transmitted power 

 

 

– P’out is transmitted power with the applied 
force 

– Pout is power with no load applied 
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• Compression of loop RB=7 mm 

 

 

 

 

 

 

 

• Resonances occur between leaky mode 
reflected from cladding/coating interface 
and fundamental mode 
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• Pure bend loss-Marcuse model 
Assumption: infinite cladding, large bend radius, weakly guided index fiber 

nco and ncl are indices of refraction of the 

core and cladding 

0 is the propagation constant in straight 

fiber, solved by the eigenvalue equation 

 

 

Re
B is effective bend radius, differing from        

RB by a stress correction factor, taken 1.28 

for SMF28e fiber 

Fiber-loop sensors 
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Fiber-loop sensors 

• Renner model- finite, coating and cladding thickness 

 

 

 

 

 

 

 

 

 

                le
B  =2 Re

B is the effective length of the loop 

           Rc  is the critical radius   

• Experimental data are obtained by changing the radius of 
fiber-loop 
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, m is an integer 



Loop sensor calibration setup 

Load cell 

Translation stage 

Translation motor 

Loop sensor 

Optical fiber 

•  Square wave signal is sent to the loop 

•  Photodetector tracks the transmitted power 

• Relative transmitted power and force are monitored with respect to 

increment in displacement 

Photodetector

Laser

Load cell

Translation 
stage
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Loop sensor calibration 

• Calibration of different loop radii 

 

 

 

 

 

 

 

 

• Smaller loops have higher sensitivity but lower measurement range 

• Loop-sensors allow large deformation without losing its elasticity 
and repeatability 
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Loop sensor calibration 

• In high sensitivity domain 

 

 

 

 

 

 

 

• Resolution 

– Force: 10-4
 N 

– Displacement: 10-5 m 

y = -0.0031x + 2.6173
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Cyclic loading tests 

• Pear-shaped loop and experimental setup 

Hollow tube

Optical fiber

2R0

Laser

Load cell

Translation stage

Optical fiber

Amplified 

photodetector

Oscilloscope Data acquisition
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Cyclic loading tests 

• Results in 10,000 cyclic loading 
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•    Total testing time: 4 days  

•     The sensors survived after 10,000 cycles 

•     Results show repeatability and 

       consistency for 104 loading/unloading cycles 

 

•    Loop radius: 5 mm 

•    Displacement: 6 mm 

•    Displacement rate: 0.4 mm/s 

•  30 s per loading/unloading 

cycle  
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Cyclic loading tests 

• Different displacement rate 
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•    Loop radius: 6 mm 

•    Displacement: 6 mm 
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SHM of laminated composites 

• Loop sensors bonded to laminated composites under flexural loading 

 Oscilloscope

Single-mode 
laser

Amplified 
photodetector

Glass fabric 
laminate

Fiber-loop 
sensor

Full 
surface 
bonded 

Bonded at  
two locations 

Pre-compressed loop 
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SHM of laminated composites 

0

2

4

6

8

0.995

1.005

1.015

1.025

1.035

0 2000 4000

Fo
rc

e
 (N

)

P
' o

u
t/

P
o

u
t

Deflection (m)

Force

P'out/Pout

0

2

4

6

8

0.9

0.92

0.94

0.96

0.98

1

0 1000 2000 3000

Fo
rc

e
 (N

)

P
' o

u
t/

P
o

u
t

Deflection (m)

Force

P'out/Pout

0

1

2

3

4

5

6

0.996

0.997

0.998

0.999

1

0 2000 4000

Fo
rc

e
 (N

)

P
' o

ut
/P

ou
t

Deflection (m)

Force

P'out/Pout

0

2

4

6

8

0.996

0.997

0.998

0.999

1

0 2000 4000

Fo
rc

e
 (N

)

P
' o

u
t/

P
o

u
t

Deflection (m)

Force

P'out/Pout

-0    

2    

4    

6    

8    

0.96

0.98

1

1.02

0 0.5 1 1.5 2 2.5

Fo
rc

e
 (N

)

P
' o

u
t/

P
o

u
t

Time ( × 1000 s)

Force

P'out/Pout

unloading

loading

Quasi-static loading on 
loop of radius 6 mm 

RB =4.9 mm        RB =5.9 mm        

RB =6.2 mm        RB =6.5 mm        
20 



Vibration Measurement 
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Optical fiber loop sensor 
setup for calibration of 
vibration measurement 

The setup used  for measuring 
the free vibration characteristics 

of a composite material. 



(a) (b) 

(c) (d) 

Vibration Measurement 

• The Vibration 
measurements 
are accurate 
and match with 
the frequency 
of the shaker 

• No fatigue or 
hysteresis is 
observed for 
over 10,000 
cycles 



Results and Discussion 
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• The system is tested with and without optical fiber sensor using 
only a PSD 

• Then the output of the sensor is related to the PSD measurements  

 



Conclusions 

• A low-cost, high sensitivity loop-sensor has been 
developed for stress or strain measurement 

• The sensor can be used in dual measurement 
ranges for displacement 

• The sensor shows survivability in large number 
of loading cycles 

• Use of loop-sensor for vibration measurement is 
possible 

• Potential applications in chemical sensing 
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