Power modulation based optical fiber loop-sensor for structural health monitoring in composite materials

Nikhil Gupta and Kevin Chen Mechanical and Aerospace Engineering Department New York University, Polytechnic School of Engineering Brooklyn, NY 11201

SysInt 2014, Bremen, Germany

List of Publications and Patents

- The technologies covered in this work are presented in the following
 - Patents:
 - Fiber-optic extensometer, US Patent #8,428,400, April 23, 2013, Nikhil Gupta, Nguyen Q. Nguyen.
 - Method for measuring the deformation of a specimen using a fiber optic extensometer, US Patent #8,649,638, February 11, 2014, Nikhil Gupta, Nguyen Q. Nguyen.
 - Papers:
 - Nishino, Z., Chen, K., and Gupta, N. Power Modulation Based Optical Sensor for High Sensitivity Vibration Measurements. IEEE Sensors, 2014, (7): p. 2153 2158.
 - Nguyen, N. Q. and Gupta, N. Whispering gallery mode sensor for phase transformation and solidification studies. Philosophical Magazine Letters, 2010. 90(1): p. 61-67.
 - Nguyen, N. Q. and Gupta, N., Analysis of an encapsulated whispering gallery mode micro-optical sensor. Applied Physics B: Lasers and Optics, 2009. 96(4): p. 793-801.
 - Nguyen, N. Q. and Gupta, N., Power modulation based fiber-optic loop-sensor having a dual measurement range. Journal of Applied Physics, 2009. 106(3), #033502.

Composite Materials

Mechanícs Laboratorv

NYUD

Introduction

- Structural Health Monitoring (SHM) A process of identifying one or more of
 - Load applied or displacement obtained on the structure
 - Extent of damage
 - Growth rate of damage
 - Performance of the structure as damage accumulates
- SHM can help in moving from *predictive maintenance* to *need-based maintenance*

NYU

- Increase in safety
- Cost saving

Whispering Gallery Mode Sensors

- Tunable laser is used
- Evanescent field of the stripped off section of fiber interacts with that of the resonator (particle)
- Coupling back of the evanescent field in the fiber gives resonance peaks, which can be tracked

Whispering Gallery Mode Sensors

- Very high sensitivity
 - Detection of single chemical molecules
 - Detection of a single HIV virus
 - Measurement of subnanometer displacement
 - For $r >> \lambda$, resonance condition:

$$2\pi r n \approx \ell \lambda$$
 ($\ell = integer$)

$$\frac{\Delta n}{n} + \frac{\Delta r}{r} \approx \frac{\Delta \lambda}{\lambda}$$

- n = refractive index of the microsphere
- λ = wavelength
- r = micro-sphere radius

WGM Sensors: Effect of **Refractive Index**

$$n_{1} = n_{0} + C_{1}\sigma_{1} + C_{2}(\sigma_{2} + \sigma_{3})$$
$$n_{2} = n_{0} + C_{1}\sigma_{2} + C_{2}(\sigma_{1} + \sigma_{3})$$

$$n_3 = n_0 + C_1 \sigma_3 + C_2 \left(\sigma_1 + \sigma_2\right)$$

Where

 n_0 undeformed index of refraction

 σ_1 , σ_2 and σ_3 are principal stresses

 C_1 and C_2 are elasto-optic coefficients of the material of the sphere.

- Sensitivity comes at a price!
 - Signal to noise ratio can be low
 - Keeping the particle in resonance can be difficult

Composite Materials

NYUI

	Silica (Yves Belouard et al. 2006)	PMMA (Feridun et al. 2004)
C ₁ (m ² /N)	-4.22 x10 ⁻¹²	-12 x10 ⁻¹²
<i>C</i> ₂ (m ² /N)	-0.65 x10 ⁻¹²	-12 x10 ⁻¹²
n ₀	1.467	1.4876

Introduction

- Microbend sensors
 - Use multi-mode fiber
 - Require high power light source
 - Normally used under compression
 - Large size

Composite Materials

Mechanícs Laboratorv

Micro and Nano Composites

NYUIC

Results and Discussion

- Power attenuation
- Critical radius (Jeunhomme, 1983) where
 - λ is the operating wavelength λ_c is cut-off wavelength Δn : core-cladding index of refraction difference
 - For present single-mode optical fiber
 - λ =1.31 μm, λ_c =1.26 μm, Δn =0.0058

R_c=11.8 mm

$$R_{c} = 20 \frac{\lambda}{\left(\Delta n\right)^{3/2}} \left(2.748 - 0.996 \frac{\lambda}{\lambda_{c}}\right)^{-2}$$

Composite Materials

NYU

• Power transmission due to curvature

$$\overline{P}_R = \frac{P_{out}}{P_{in}}$$

*P*_{out} is transmitted power through the loop *P*_{out} is power incoming to the loop

• Compressing loop creates more losses, relative transmitted power

$$\overline{P} = \frac{P'_{out}}{P}$$

- P'_{out} is transmitted power with the applied force

 $- P_{out}$ is power with no load applied

Composite Materials & Mechanics Laboratory Innovation in Micro and Nano Composit

• Compression of loop $R_B = 7 \text{ mm}$

- + R
- coating cladding eore R_B

NYUI

• Resonances occur between leaky mode reflected from cladding/coating interface and fundamental mode

10

• Pure bend loss-Marcuse model

Assumption: infinite cladding, large bend radius, weakly guided index fiber

$$\overline{P}_{R} = \exp\left(-2\alpha_{B}l_{B}^{e}\right)$$
where
$$k = V = V$$

$$V = K = (V = V = V$$

$$K = (V = V = V = V$$

 $k = 2\pi / \lambda$ $V = ak \left(n_{co}^{2} - n_{cl}^{2} \right)^{1/2} \quad l_{B}^{e}$ $\kappa = \left(k^{2} n_{co}^{2} - \beta_{0}^{2} \right)^{1/2}$ $\gamma = \left(\beta_{0} - k^{2} n_{cl}^{2} \right)^{1/2}$

SMF28e from Corning, NY

Fiber layer	Radius (µm)	Index of refraction
Core	4.1	1.4517
Cladding	62.5	1.447
Coating	125	1.4786

$$2\alpha_B = \frac{1}{2} \left(\frac{\pi}{\gamma^3 R_B^e}\right)^{1/2} \frac{\kappa^2}{V^2 K_1^2 (\gamma a)} \exp\left(-\frac{2\gamma^3 R_B^e}{3\beta_0^2}\right)$$
$$\frac{e}{R_B^e} = 2\pi R_B^e$$

 n_{co} and n_{cl} are indices of refraction of the core and cladding

 β_o is the propagation constant in straight fiber, solved by the eigenvalue equation

$$\kappa \frac{J_1(\kappa a)}{J_0(\kappa a)} = i\gamma \frac{H_1^1(i\gamma a)}{H_0^1(i\gamma a)}$$

 R^{e}_{B} is effective bend radius, differing from R_{B} by a stress correction factor, taken 1.28 for SMF28e fiber

• Renner model- finite, coating and cladding thickness

 $\overline{P}_R = \exp\left(-2\alpha_{BC}l_B^e\right)$

where

$$2\alpha_{BC} = 2\alpha_{B} \frac{2(Z_{ct}Z_{cl})^{1/2}}{(Z_{ct} + Z_{cl}) - (Z_{ct} - Z_{cl})\cos(2\Theta_{0})}$$
$$Z_{cl} = k^{2}n_{cl}^{2}(1 + 2b/R_{B}^{e}) - \beta_{0}^{2}$$
$$Z_{ct} = k^{2}n_{ct}^{2}(1 + 2b/R_{B}^{e}) - \beta_{0}^{2}$$
$$\Theta_{0} = \frac{\gamma^{3}R_{B}^{e}}{3k^{2}n_{cl}^{2}} \left(\frac{R_{c}}{R_{P}^{e}} - 1\right)^{3/2} \qquad R_{c} = \frac{2k^{2}n_{cl}^{2}b}{N^{2}}$$

 $\frac{4b\gamma R_B^e}{3\pi R_c} \left(\frac{R_c}{R_B^e} - 1\right)^{3/2} = \begin{cases} 2m - 1/2 \text{ for maximum} \\ 2m - 3/2 \text{ for minimum} \end{cases}, m$

, *m* is an integer

- $l_B^e = 2\pi R_B^e$ is the effective length of the loop R_c is the critical radius
- Experimental data are obtained by changing the radius of
 fiber-loop

NYU:DC

Composite Materials

Mechanics Laboratorv

Loop sensor calibration setup

- Square wave signal is sent to the loop
- Photodetector tracks the transmitted power
- Relative transmitted power and force are monitored with respect to increment in displacement

Loop sensor calibration

• Calibration of different loop radii

- Smaller loops have higher sensitivity but lower measurement range
- Loop-sensors allow large deformation without losing its elasticity and repeatability

NYU.

Loop sensor calibration

Cyclic loading tests

• Pear-shaped loop and experimental setup

16

Cyclic loading tests

• Results in 10,000 cyclic loading

- Loop radius: 5 mm
- Displacement: 6 mm

Composite Materials

Mechanícs Laboratorv

Micro and Nano Composites

NYU-D

- Displacement rate: 0.4 mm/s
- 30 s per loading/unloading cycle

- Total testing time: 4 days
- The sensors survived after 10,000 cycles
- Results show repeatability and consistency for 10⁴ loading/unloading cycles

Cyclic loading tests

• Different displacement rate

18

- Loop radius: 6 mm
- Displacement: 6 mm

SHM of laminated composites

• Loop sensors bonded to laminated composites under flexural loading

SHM of laminated composites

Quasi-static loading on loop of radius 6 mm

Vibration Measurement

Optical fiber loop sensor setup for calibration of vibration measurement

21

The setup used for measuring the free vibration characteristics of a composite material.

Vibration Measurement

- The Vibration measurements are accurate and match with the frequency of the shaker
- No fatigue or hysteresis is observed for over 10,000 cycles

Results and Discussion

- The system is tested with and without optical fiber sensor using only a PSD
- Then the output of the sensor is related to the PSD measurements

Conclusions

- A low-cost, high sensitivity loop-sensor has been developed for stress or strain measurement
- The sensor can be used in dual measurement ranges for displacement
- The sensor shows survivability in large number of loading cycles
- Use of loop-sensor for vibration measurement is possible
- Potential applications in chemical sensing

Acknowledgements

- National Science Foundation grant # CBET 0809240/0619193
- Environmental Protection Agency: Smart Fellowship to Kevin Chen for chemical sensing
- Zachary Nishino, Dr. Nguyen Q. Nguyen
- Dr. Volkan Otugen's group at Southern Methodist University, Dallas

