

HUMANOID RESEARCH FOR BRAIN IMPAIRMENT

ABDUL RAHMAN OMAR

Universiti Teknologi MARA (UiTM) Shah Alam, Malaysia

The Human Brain Project

 The winner of the European Commission competition of Future and Emerging Technologies (FET) in 2013.

o 1.19 billion € over 10 years.

- The principal investigators include
 33 scientists from Germany.
- The "Human Brain Project" will develop the most detailed model of the brain, for studying how the human brain works and ultimately to develop personalised treatment of neurological and related diseases.

Today at the White House, President Obama unveiled the "BRAIN" Initiative - a bold new research effort to revolutionize our understanding of the human mind and uncover new ways to treat, prevent, and cure brain disorders like Alzheimer's, schizophrenia, autism, epilepsy, and traumatic brain injury.

Niche Research Grant Scheme

Background

- Autism Spectrum Disorder: 1 in 150 live births
- Cerebral Palsy: 2 in 1000 live births
- Stroke: 5-7% aged more than 65 years old
- o Post Traumatic Stress Disorder: 3.6 in 100 (18 54 years old)
- o Alzheimer's: 4.5% aged 75 years old
- o Parkinson's: 20-280 / 100,000

Background

- Seriousness of brain impairment globally and locally
 - A grand challenge even by the US
- Existing therapies (include medication, dietary, surgery etc.) are limited
 - Requires alternative approaches
- Humanoid-based Intervention is proposed
 - Human-based Studies & Technological Approach
- Outcomes
 - Theory and technology on humanoid design for brain impairment

Brain Impairment

Childhood

Congenital

Adult

Acquired

Autism
Down Syndrome
Cerebral Palsy

Alzheimer's Parkinson Trauma Stroke

Conventional Treatment:

- Behavior & Communication Approaches (Education)
- Dietary Approach
- Medication
- Complementary & Alternative Medicine

Involve multidisciplinary professionals:

- Neurologists
- Rehabilitation Physicians
- Psychiatrists & Psychologists
- Occupational Therapists
- Physiotherapists
- Speech & Language Therapists
- Special Education Teachers
- Dieticians

Problem Statement

The main gaps/shortcomings:

- Neurological Diseases lack of specific drugs
- Lack of systematic intervention in brain impairment
- Multiple professionals for personal care
- Lack of advanced technological tools

Proposal:

Therapy Augmentation via Humanoid Therapy / Rehabilitation

Objectives

- To characterize the key interactions between humanoid and subject
- To formulate the technological environment for the humanoid therapy/rehabilitation
- To define the social and ethical impact on the humanoid therapy/rehabilitation

How Humanoid Therapy / Rehabilitation can Help?

Physically more approachable

Teach how to detect and understand emotions and social behaviours

Provoke interactive and social responses

To overcome the impairments in terms of:

- Social Interaction
- Communication Skills
- Imaginative Play associated with Repetitive Behavior

Subprojects (SP)

TECHNOLOGY-BASED STUDIES

SP1: Humanoid System with Embedded Devices

SP2: Wireless Network
Module inclusive of Security
and Advanced Material

SP3: Advanced Sensor Modules

HUMAN-BASED STUDIES

SP4: Kinesiology Studies

SP5: Brain Impairment Studies

SP6: Social Implications of Technology

SP1: Humanoid System with Embedded Devices

Motivation

Humanoid-based augmented brain impairment therapy

Objective

 To characterize a humanoid for augmented brain impairment therapy

Methodology

Humanoid algorithm

SP2: Wireless Network Module, Security & Advanced Material

Motivation

Light-weight information sharing architecture

Objective

Wireless, secured, compact
 & high performance
 network modules

Methodology

 Establish 3D on-substrate circuit architecture with light-weight cryptographicbased communication, based on advanced material

SP3: Advanced Sensor Modules

Human-Humanoid Complex Physical Interactions

Motivation

 Combination of memristor ability to act as memory and fundamental circuit element, and the material sensing ability

Objective

 To synthesize and characterize memristor-based sensors

Methodology

- New material synthesis
- Device structure
- Circuit topology

SP4: Kinesiology Studies

Subject Movement Examination

Temporalspatial parameters

Gait symmetry

Joint angles & moments

Motion capture

Motivation

 Brain impairment disease relates to deformation in physical movement

Objective

 To characterize physical movement of brain impairment subject

Methodology

 Neuro-muscular, gait analysis and feature extraction

SP5: Brain Impairment Studies

Subject Behaviour **Examination** Humanoid Assessment Robot Method Interaction Cognitive Measuring recovery outcomes

Motivation

Augmentative treatment in brain impairment diseases

Objective

 To formulate assessment method in evaluating the performance of humanoid intervention

Methodology

- Clinical studies
- fMRI verification

SP6: Social Implications of Technology

Conceptual Framework

Social & behavioral aspect

Policy & guideline aspect

Economical (cost benefit) aspect Future trends towards treatment & intervention

Motivation

 Any alternative technologybased approach will require studies on social implications

Objective

 To formulate conceptual framework of humanoidbased brain impairment augmented therapy

Methodology

Qualitative research approach

Pilot Experiment of Robot-based Intervention for Autism

The Gait Study

Long-Term Outcomes

- Better understand the humanoid-based rehabilitation mechanisms for brain impairment diseases
- Reduce language barriers through technological advances in how technology interact with human
- Develop solutions to prevent, treat, or even reverse the harmful effects of PTSD and Traumatic Brain Injury
- Create high-tech jobs in cutting-edge industries of the future

Future Humanoid: Brain Impairment Friendly

Ergonomics industrial design

Spiritually motivated (Islam)

Complete cyber physical system

Improved movement resolution

Light-weight material

Wireless power transfer

Trans-disciplinary Involvements

Microwave Technology Centre Humainoid Robot & Bio-Sensing Centre

Faculty of Mech. Eng.
Faculty of Elect. Eng.
Faculty of Maths &
Computer Sc

Fac. of Admin. Sc. & Policy Studies
Faculty of Business & Mgt

Institute of Business
Excellence
Institute of Science

RMI Kinesiology Laboratory

Faculty of Pharmacy
Faculty of Health Science
Faculty of Medicine
Faculty of Applied Science

Faculty of Art & Design
Faculty of Arch, Survey
& Planning

Roadmap for Technology-Based Studies

CLOUD COMPUTING

INFORMATION
ARCHITECTURE:
Behavioral, Therapy,
Movement,
Human-robot interaction

HUMANOID:

Integration of indigenous technologies (wireless modules, advanced tactile sensors)

Fundamental researches in various disciplines

2013
Humanoid
Research for
Brain
Impairment

CLOUD COMPUTING

INFORMATION
ARCHITECTURE:
Alzheimer's, Down
Syndrome, Parkinson,
PTSD, Traumatic Brain
Injury

HUMANOID:

Wireless power transfer, Intelligent sensors, Ubiquitous connectivity

2017Advanced
Humanoid
for Autism

2020 Intelligent Humanoid for Brain Impairment

Roadmap for Human-Based Studies

e-services

INFORMATION
ARCHITECTURE
Big Data &
Analytics

Fundamental researches in various disciplines focusing on Humanoid-Augmented Therapy for Autism Humanoid-Augmented Therapy for Alzheimer's Humanoid-Augmented Therapy for PTSD

2017

Human-Robot Interaction for Adult

Spiritual studies (Islam)

2020

Human-Robot Interaction for PTSD

Spiritual intervention (Islam)

2013

Human-Robot Interaction for Children

Socio-economic impacts of technology

Ethics Approval

- Medical Research and Ethics Committee, Ministry of Health Malaysia
- Research Ethics Committee, Universiti Teknologi MARA

Concluding Remarks

- A truly interdisciplinary research initiatives with future commercial potential
- Multi-faculty, multi-centre involvements
- High proportion of aspiring junior lecturers for long-term sustainability with international potentials

Invitation for Collaboration

<u>www.robinuitm.com</u>
htttp://uitmniche.myapmttemc.org

Collaborate, collaborate, collaborate. This is our opportunity.
Prof. Karlheinz Meier, University of Heidelberg,
Co-director of the HBP and co-leader of the Neuromorphic
Computing Subproject

Acknowledgement

- Due acknowledgment is accorded to the Ministry of Education, Malaysia for the funds received through the Niche Research Grant Scheme (NRGS), [Project file: 600-RMI/NRGS 5/3 (../2013)]
- ❖ and to the Research Management Institute (RMI), Universiti Teknologi MARA (UiTM) for the additional funds in the form of the Principal Investigator Support Initiative (PSI) grant

Thank you for your attention!